Instruction will be attached ( Walmart instruction is an example of how your work should be)

  
Allstate Claim Prediction Challenge (AllState2)
A key part of insurance is charging each customer the appropriate price for the risk they represent.
Risk varies widely from customer to customer, and a deep understanding of different risk factors helps predict the likelihood and cost of insurance claims. The goal of this competition is to better predict Bodily Injury Liability Insurance claim payments based on the characteristics of the insured customer’s vehicle.
Many factors contribute to the frequency and severity of car accidents including how, where and under what conditions people drive, as well as what they are driving. 
Bodily Injury Liability Insurance covers other people’s bodily injury or death for which the insured is responsible.   The goal of this competition is to predict Bodily Injury Liability Insurance claim payments based on the characteristics of the insured’s vehicle.   
Files
Train.cvs
Test.cvs
Data Description
Each row contains one year’s worth information for insured vehicles.  Since the goal of this competition is to improve the ability to use vehicle characteristics to accurately predict insurance claim payments, the response variable (dollar amount of claims experienced for that vehicle in that year) has been adjusted to control for known non-vehicle effects. Some non-vehicle characteristics (labeled as such in the data dictionary) are included in the set of independent variables.  It is expected that no “main effects” corresponding will be found for these non-vehicle variables, but there may be interesting interactions with the vehicle variables. 
Calendar_Year is the year that the vehicle was insured.  Household_ID is a household identification number that allows year-to-year tracking of each household. Since a customer may insure multiple vehicles in one household, there may be multiple vehicles associated with each household identification number. “Vehicle” identifies these vehicles (but the same “Vehicle” number may not apply to the same vehicle from year to year). You also have the vehicle’s model year and a coded form of make (manufacturer), model, and submodel.  The remaining columns contain miscellaneous vehicle characteristics, as well as other characteristics associated with the insurance policy.  See the “data dictionary” (data_dictionary.txt) for additional information.
Our dataset naturally contained some missing values. Records containing missing values have been removed from the test data set but not from the training dataset. You can make use of the records with missing values, or completely ignore them if you wish. They are coded as “?”.
There are two datasets to download: training data and test data. You will use the training dataset to build your model, and will submit predictions for the test dataset. The training data has information from 2005-2007, while the test data has information from 2008 and 2009. Submissions should consist of a CSV file. Records from 2008 will be used to score the leaderboard, and records from 2009 will be used to determine the final winner.
Missing feature values have been kept as is, so that the competing teams can really use the maximum data available, implementing a strategy to fill the gaps if desired. Note that some variables may be categorical (e.g. f776 and f777).
The competition sponsor has worked to remove time-dimensionality from the data. However, the observations are still listed in order from old to new in the training set. In the test set they are in random order.

Order a unique copy of this paper
(550 words)

Approximate price: $22

Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

At Solution Essays, we are determined to deliver high-quality papers to our clients at a fair price. To ensure this happens effectively, we have developed 5 beneficial guarantees. This guarantees will ensure you enjoy using our website which is secure and easy to use.

Money-back guarantee

Most companies do not offer a money-back guarantee but with Solution Essays, it’s either a quality paper or your money back. Our customers are assured of high-quality papers and thus there are very rare cases of refund requests due to quality concern.

Read more

Zero-plagiarism guarantee

All our papers are written from scratch and according to your specific paper instructions. This minimizes any chance of plagiarism. The papers are also passed through a plagiarism-detecting software thus ruling out any chance of plagiarism.

Read more

Free-revision policy

We offer free revisions in all orders delivered as long as there is no alteration in the initial order instruction. We will revise your paper until you are fully satisfied with the order delivered to you.

Read more

Privacy policy

All data on our website is stored as per international data protection rules. This ensures that any personal data you share with us is stored safely. We never share your personal data with third parties without your consent.

Read more

Fair-cooperation guarantee

Ordering and sending money to us is an indication that you are purchasing our products and services. To have business talks laid out in the official language, you can check on our terms and conditions and get more information about this.

Read more

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Order your essay today and save 20% with the discount code: LEMONADEPlace Order